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Abstract

Several plant species indirectly defend themselves against herbivory by attracting natural enemies of herbivores by releasing signal

chemicals when infested. Previous empirical research suggested that the chemical signals also reflexively induce signal emission by

neighboring undamaged plants. We hypothesize that such a reflexively induced signal is a defensive strategy used by undamaged

plants to avoid possible future risk. Using a mathematical model, we show that this defense against future risk can evolve if the

following conditions are met: (1) the cost of the signal is small relative to the cost of damage by infestation, (2) the attractiveness of

the signal to natural enemies is positively correlated with the local density of the signal chemical, (3) plants with infested neighbors

are at greater risk than those without infested neighbors, and (4) the lifespan of plants is long compared with that of herbivores. We

also discuss the relationship between our model and recent models of the evolution of cooperation.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

There are two types of plant defense against
herbivory: ‘‘direct defense’’ and ‘‘indirect defense’’.
Direct defense, which may be described simply as
‘‘resistance’’, denotes defense by means of physical
defensive structures, toxins, or induced chemical com-
pounds that diminish herbivore activity, such as various
proteinase inhibitors. In addition to direct means, some
plants defend themselves in a more roundabout way
(indirect defense), by emitting volatile chemicals, which
attract natural enemies of the herbivores, when infested
(e.g., see Dicke, 1988; Turlings et al., 1990; Farmer,
1997). Natural enemies, which may be predators or
parasitoids, find the infested plants by tracing the source
of the odor and exploit the herbivore, benefiting both
the natural enemy and the plant. Such a signal odor has
been called an ‘‘SOS signal’’ (Bruin et al., 1995), because
the plants beg natural enemies of the herbivore for help.
This may be interpreted as mutualism across trophic
levels, in which the natural enemies act as bodyguards

for the plants. Several authors have shown that the SOS
signal system can evolve, using mathematical models
(Sabelis and De Jong, 1988; Godfray, 1995).
In relation to this indirect-defense strategy of plants,

some plants ‘‘eavesdrop’’ on signals emitted by other
plants; that is, the plants receive and utilize chemical
signals that may have originally been released to attract
natural enemies by nearby infested plants (Dicke and
Bruin, 2001). For example, in some plant species,
undamaged individuals or leaves increase their resis-
tance to herbivory when exposed to volatile chemicals
emitted by damaged individuals or leaves (Haukioja
et al., 1985; Zeringue, 1987; Farmer and Ryan, 1990;
Shulaev et al., 1997; Arimura et al., 2000; Dolch and
Tscharntke, 2000). Interestingly, the eavesdropper and
emitter can be different species (Karban et al., 2000;
Karban, 2001; Karban and Maron, 2002). This phe-
nomenon suggests that undamaged plants near damaged
plants utilize volatile chemicals from damaged neigh-
bors as cues to future attack by herbivores, and prepare
to defend against herbivory in advance.
Therefore, chemical signals can affect the direct

defense of plants. In addition, some research suggests
that chemical signals emitted by infested individuals
reflexively promote the emission of chemical signals by
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nearby undamaged plants (Dicke et al., 1990; Bruin
et al., 1992; Birkett et al., 2000; Chamberlain et al., 2001;
Dicke and Dijkman, 2001). In other words, undamaged
plants turn into signalers, after eavesdropping on the
signal, although the signal released by the eavesdroppers
is weaker than the original. We refer to a signal
reflexively emitted by undamaged plants as a ‘‘coopera-
tive signal’’ or more simply as a ‘‘co-signal’’, because the
undamaged and infested individuals signal together as if
they were cooperating to call bodyguards. Neither the
physiological mechanism nor the underlying evolution-
ary meaning of cooperative signals is clear. When
undamaged plants receive signals from neighboring
plants that have been attacked, do they benefit from
signaling together with the infested neighbors? Is such a
trait adaptive, even if signal emission is costly? Our
primary aim in this paper is to provide a theoretical
answer to this question by constructing and analysing a
mathematical model. In the next paragraph, we address
the hypothesis underlying our model. We consider other
interpretations of the evolution of the cooperative signal
in Section 3.
We start with a plant population in which a SOS

signal has already been established; that is, there exists a
mutualistic relationship between plants and natural
enemies, with natural enemies acting as bodyguards
for the plants. We do not deal with the evolution of the
SOS signal system, but focus on the evolution of the
cooperative signal. One of the most significant assump-
tions of our hypothesis is that a non-infested plant near
an infested plant is more likely to be attacked in the near
future than one without infested neighbors. Of course,
some natural enemies might exterminate herbivores
infesting nearby plants fortuitously, since the attacked
neighbor is calling bodyguards. Since the risk of
infestation remains, the non-infested plant should do
something to avoid future possible risk and to improve
its potential fitness. What can the plant when faced with
such danger?
Suppose that the effectiveness of the odor in attract-

ing natural enemies is positively correlated with the local
number of plants simultaneously emitting the odor. This
is plausible, because the strength of an odor increases
with the chemical concentration. If so, the cooperative
signal improves the attractiveness of the signal, and
leads to the effective extermination of the herbivores
infesting the original signaler. Therefore, the co-signaler
can reduce its potential future risk. In a sense, we may
regard this behavior literally as cooperation between
neighboring plants, since the co-signaler increases not
only its own potential fitness, but also the fitness of
nearby infested plants. From the viewpoint of the co-
signaler, however, the purpose of the behavior is to
improve its own fitness by removing the risk of future
infestation, and this behavior is favored by natural
selection if the fitness gain exceeds the cost of the signal.

Therefore, we postulate that the cooperative signal
evolves to avoid possible future risk, improving the
attraction of natural enemies and eliminating the
herbivores in advance.
In this paper, we mathematically model this idea to

confirm its preciseness. We investigate the conditions
under which the cooperative strategy will evolve. We
also discuss the relationship between our model and
recent models of the evolution of cooperation. We have
defined the many symbols used throughout this paper in
Appendix A.

2. Model

2.1. Structure

Our model considers a plant population composed
of an infinitely large number of patches, in which N

individuals inhabit every patch. Individuals in the same
patch are neighbors spatially. We assume that there is
no genetic relationship between patch-mates and that
they are random samples of the population as a whole.
For convenience, we assign successive integers
(1, 2, 3,y,N) to all individuals in each patch. Imagine
that we rearrange them linearly in numerical order from
left to right. Hereafter, we refer to the individual with
the smallest number, i.e. 1, as the ‘‘leftmost’’ individual.
Each plant is in one of two possible states: infested (state
1) or non-infested (state 0). We state that a patch is in
state LjQ; when the leftmost individual is in state L and
there are Q infested individuals other than the leftmost.
By definition, L is either 0 (non-infested) or 1 (infested)
and 0pQpN � 1: Therefore, there are two possible
values of L and N possible values of Q; so that there are
2N different patch states. Note that L þ Q gives the
number of infested individuals in a patch in state LjQ:
We define two plant strategies or phenotypes:

‘‘cooperative’’ (strategy C) and ‘‘un-cooperative’’ (strat-
egy U). Every plant in the population is one of these two
phenotypes, and the phenotype of an individual never
changes. Individuals of both phenotypes signal to
attract natural enemies when infested, which implies
that the SOS signal system is already established. In
addition, C strategy individuals emit the signal when the
number of infested individuals in that patch reaches a
threshold n� (1pn �pN � 1), regardless of their own
state. This implies that the density of the signal chemical
monotonically increases with the number of signaling
individuals, and that the signal induces cooperative
signal emission by C strategy individuals when the
density reaches a threshold. We define type X=Y

patches as patches in which the leftmost individual is
phenotype X and all the others are type Y : Throughout
this paper, we use the symbols X and Y to denote any
one of C and U : Therefore, there are four types of
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patches: C=C; C=U ; U=C; and U=U : From the
definition of patch type, many patches are not classified
into any of these four types. For convenience, we refer
to patches that do not belong to any type as type */�
patches. Here, the asterisk to the left of the slash implies
that the leftmost individual can be of any type, and the
minus sign to the right implies that not all of the
individuals other than the leftmost are of the same type.
We assume that generations are discrete and that one

generation has T time steps (Fig. 1). Here, a time step
means the lifespan of the herbivore, so that T means the
relative length of the lifespan of the plants to that of the
herbivores. No plant individual dies during a genera-
tion. After T time steps, the plants reproduce asexually
and all the parents die. Offspring have the same
phenotypes as their parents; they are randomly dis-
persed over the population, and then the next generation
starts from the initial time step. We assume that none of
the individuals are infested at the initial time step.
Therefore, all patches are initially in state 0j0: Each time

step consists of two sub-steps in the order: ‘‘recovery
step’’ and ‘‘attack step’’. In other words, recovery and
attack sub-steps are repeated alternately T times per
generation. The events that occur in those two steps are
addressed in detail below.
First, in recovery sub-steps, infested plants can

recover to become non-infested. Imagine infested plants
emitting signal chemicals and attracting natural ene-
mies. If the natural enemies find them, the infested
plants are rescued and shift to the non-infested state
(state 0). We assume that recovery occurs in an all-or-
nothing manner; i.e. all the infested individuals in the
patch recover when recovery occurs. Therefore, recovery
is equivalent to transition to state 0j0: This assumption
implies that the natural enemies find herbivores on
individuals in the same patch simultaneously, because
they are in close proximity. The probability of recovery
of a patch depends on the number ns of signaling
individuals within the patch. We assume that the
recovery probability of a patch with ns signaling
individuals is given by V ðnsÞ; which is an increasing
function of ns: That is, the signal is more effective when
emitted simultaneously by multiple individuals than
when emitted solely by a single individual. Note that we
need not consider ns ¼ 0; because in such a patch, no
plant is infested, so recovery does not occur (or in other
words recovery occurs with probability 1). Therefore, we
have V ð1ÞpV ðnsÞpV ðNÞ: We also denote the minimum
and maximum values of V ðnsÞ by r and R; respectively,
i.e. r ¼ V ð1Þ and R ¼ V ðNÞ:
Second, in attack sub-steps, herbivores attack non-

infested individuals. The probability that a non-infested
individual is attacked is given by the function ZðkÞ;
where k is the number of infested individuals in that
patch. ZðkÞ is an increasing function, which implies that
individuals with many infested patch-mates are at
greater risk than those with few infested patch-mates.
Note that we need not consider k ¼ N; because in such a
patch, there are no non-infested individuals. Therefore,
we have Zð0ÞpZðkÞpZðN � 1Þ: We also denote the
minimum and maximum values of ZðkÞ by h and H ;
respectively; i.e., h ¼ Zð0Þ and H ¼ ZðN � 1Þ: We
assume that attacks of non-infested individuals in an
attack step are independent. That is, the number of
newly infested individuals is determined by a binary
distribution: the probability that l individuals are newly
attacked in a patch with k already-infested individuals is
given by

N � k

l

 !
ZðkÞlf1� ZðkÞgN�k�l ;

where

N � k

l

 !
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Fig. 1. Diagram describing the events in the life cycle of plants.

Generations are discrete, and recovery steps and attack steps are

alternately repeated T times in a generation. After T time steps,

asexual reproduction occurs, and the next cycle begins.
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is the number of combinations of l individuals out of
N � k individuals.
One might wonder why each generation starts with a

recovery step, not an attack step. We discuss this in
detail in Section 3. Here, note only that the initial
recovery step does not affect the result, because it makes
the transition only from state 0j0 to state 0j0 in all
patches (recall that all patches are initially in state 0j0).
We do not explicitly consider the population dy-

namics of herbivores and natural enemies. In addition,
the size of the plant population is temporally constant.
At the end of each time step (before the next recovery
step), each signaling individual incurs the cost S of the
signal. Furthermore, if the individual is infested, it
incurs the additional cost d of damage by infestation.
Since infested individuals always signal, they incur cost
S þ d per time step. We assume that costs are additive
for mathematical simplicity; that is, the total cost of a
plant at the end of a generation is equivalent to the sum
of all the costs that the plant incurs during its lifetime.
We assume that the initial frequency of cooperative
individuals is q and that individuals of both phenotypes
are randomly distributed over the population. We derive
the condition under which the cooperative strategy
increases in frequency, i.e. it is selected for. However, we
do not explicitly follow the change of frequency of each
phenotype, but instead investigate which of the two
phenotypes has a greater average fitness (smaller
average cost) at the end of a single generation, i.e. after
T time steps.
In the following sub-sections, we derive the conditions

under which the cooperative strategy increases in
frequency, and investigate the effect of various para-
meters on these conditions. In Section 2.2, we analyse
the model for N ¼ 2; because under this restriction, the
model is analytically tractable and the result is relatively
easy to understand. In Section 2.3, we consider all N:
The result for N ¼ 2 gives a basis for understanding the
results for all N; which is contrasted with the result for
N ¼ 2:

2.2. Analysis for N=2

When N ¼ 2; there are only four possible patterns of
patch state: 0j0; 1j0; 0j1; and 1j1: For convenience, we
assign scalars 1, 2, 3, and 4 to the coupled states 0j0; 1j0;
0j1; and 1j1; respectively. Note that all the patches are
classified into one of four types C=C; C=U ; U=C; and
U=U under N ¼ 2; i.e. there are no type */� patches.
We can also use the terms ‘‘left’’ and ‘‘right’’ to indicate
the two individuals in a patch. Note that V ðnsÞ and ZðkÞ
can take only their maximum or minimum values,
because V ð1ÞpV ðnsÞpV ð2Þ and Zð0ÞpZðkÞpZð1Þ:
Consequently, we need only four values r ¼ V ð1Þ;R ¼
V ð2Þ; h ¼ Zð0Þ; and H ¼ Zð1Þ to completely describe
functions V ðnsÞ and ZðkÞ: Since 1pn�pN � 1; we have

n� ¼ 1 under N ¼ 2; therefore, cooperative individuals
always signal when their partners are infested.
From this, the state transition diagram of a recovery

step is as shown in Fig. 2a. In the diagram, circles denote
the state of the patch and each arrow represents a
transition between the two states. The values beside the
arrows are the probabilities of the transitions. Note that
recovery is equivalent to transition to state 1 (state 0j0).
In state 1, nobody is infested, so patches in state 1 do
not change state in a recovery step. Therefore, the
transition probability from state 1 to state 1 is unity.
In state 4, both individuals are infested and are also
signaling; therefore, the recovery probability is V ð2Þ ¼
R: In state 2 (state 1j0), the probability of recovery rX=Y ;2

depends on the strategy Y of the non-infested individual
on the right. If the individual on the right is cooperative
ðY 
 CÞ; it signals because the left individual is infested.
Therefore, rX=C;2 ¼ V ð2Þ ¼ R; and both individuals
signal. Conversely, if the individual on the right is not
cooperative ðY 
 UÞ; only the left individual signals, so
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that rX=U ;2 ¼ V ð1Þ ¼ r: Similarly, for state 3 (state 0j1),
rC=Y ;3 ¼ V ð2Þ ¼ R and rU=Y ;3 ¼ V ð1Þ ¼ r for any Y :
Therefore, the state transition probabilities depend on
the type of patch.
The state transition diagram for an attack step is

shown in Fig. 2b. The notation is the same as in Fig. 2a.
We can easily calculate the transition probabilities in the
diagram of the attack step, noting that the number of
attacks on individuals follows a binary distribution, as
mentioned above. For example, nobody is infested in
state 1, so that the probability of attack per individual is
h: Therefore, the probability that the individual on the
left is attacked and that on the right is not is hð1� hÞ;
which is equivalent to the probability of the transition
from state 1 to state 2.
Comparing the average per-step cost to cooperative

individuals with that to un-cooperative individuals, we
can assess the relative cost per generation and examine
whether the cooperative strategy increases in frequency
under selection. Since the calculation is complicated, we
present it in Appendix B. As shown in the appendix, the
cooperative strategy increases in frequency when

S

d
oYðq;TÞ; ð1Þ

where Yðq;TÞ is calculated from the initial frequencies
of all patch states and the values of r;R; h;H; q; and T :
Note that arguments of Y; i.e. q and T ; are shown for
simplicity, and many other parameters actually affect
the value of Y: We represent the values of Y for specific
values of q or T using expressions such as Yð1;TÞ;
Yðq; 1000Þ; or Yð0:5; 20Þ: We may omit the arguments
for Y when there is no confusion.

Y is independent of S and d (see Appendix B). Therefore,
Eq. (1) implies that the cooperative strategy increases in
frequency if the signal cost S is small relative to the damage
cost d; otherwise it decreases. Therefore, Y represents the
upper threshold of S=d under which the cooperative
phenotype increases. As Y increases, the condition becomes
moderate; consequently, Y reflects the advantage of the
cooperative strategy over the un-cooperative strategy.
As shown in Appendix B, we cannot obtain an

analytical expression of Y for general T : However, we
can calculate Yðq;NÞ; i.e. Y for infinite T :

where

z ¼ f1� ð1� hÞ2ð1� RÞg f1� ð1� HÞð1� rÞg: ð2bÞ

Note that the un-cooperative strategy cannot invade a
population composed entirely of cooperative individuals
if Eq. (1) is satisfied for q ¼ 1: Namely, an ‘‘evolutiona-
rily stable’’ (Maynard Smith, 1982) cooperative strategy
arises when S=doYð1;TÞ: Substituting q ¼ 1 for Eq. (2),
we obtain Yð1;TÞ for infinite T ; i.e. Yð1;NÞ:

Yð1;NÞ

¼
ðR � rÞðH � hÞ

f1� ð1� HÞð1� RÞgf1� ð1� hÞ2ð1� rÞg
: ð3Þ

Eq. (3) shows that Yð1;NÞ ¼ 0 for R ¼ r or H ¼ h:
This means that the cooperative strategy can never be
evolutionarily stable under those conditions. This is
intuitively correct. That is, if the cooperative signal has
no effect, i.e. R ¼ r; cooperative individuals obviously
cannot obtain any benefit. Likewise, the cooperative
signal is nothing more than a waste of energy when H ¼
h; because there is no additional future risk to avoid.
If Eq. (1) is satisfied for q ¼ 0; the cooperative

strategy can invade a population of un-cooperative
individuals. Therefore, invasion occurs when S=do
Yð0;TÞ: From Eq. (2), we can calculate Yð0;NÞ:

Note that the condition for invasion, S=do Yð0;TÞ;
becomes the condition under which the un-cooperative
strategy is evolutionarily stable, by reversing the
direction of the inequality sign. Yð0;NÞ becomes 0 for
R ¼ r; as well asYð1;NÞ: Conversely,Yð0;NÞ is strictly
negative for H ¼ h; as long as R > r and 0oho1: This
implies Yð0;NÞoYð1;NÞ; that is, the condition for
invasion is more severe than that for evolutionary
stability. We confirm this below.
Eq. (2) shows that Yðq;NÞ is a function of R; r;H; h;

and q: In the following, we graphically investigate the
relationship between Yðq;NÞ and those parameters.
First, Yðq;NÞ is an increasing function of q (Fig. 3).
This implies that Eq. (1) never fails during selection,
once satisfied. That is, if Yðq;NÞ > S=d; selection
increases q; and this leads to an even larger Y:
Therefore, the cooperative phenotype continues to
increase in frequency until it is fixed in the population
(see Fig. 3). The same argument is also applicable to the

ARTICLE IN PRESS

Yðq;NÞ ¼
ðR � rÞ½fzþ 2qðR � rÞhð1� hÞgðH � hÞ � ð1� qÞð1� HÞðR � rÞhð1� hÞf1� ð1� hÞ2ð1� RÞg�

f1� ð1� HÞð1� RÞg½fzþ 2qðR � rÞhð1� hÞgf1� ð1� hÞ2ð1� rÞg þ ð1� qÞðR � rÞhð1� hÞf1� ð1� hÞ2ð1� RÞg�
;

ð2aÞ

Yð0;NÞ ¼
ðR � rÞ½f1� ð1� HÞð1� rÞgðH � hÞ � ð1� HÞðR � rÞhð1� hÞ�

f1� ð1� HÞð1� RÞg½f1� ð1� HÞð1� rÞgf1� ð1� hÞ2ð1� rÞg þ ðR � rÞhð1� hÞ�
: ð4Þ
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un-cooperative strategy. Therefore, these two pheno-
types never stably coexist.
The effects of H and h are quite simple (Figs. 4a and

b). Yðq;NÞ increases with increasing H and decreasing
h: This effect is easy to understand, because the
advantage Y of avoiding future risk should be positively
correlated with the relative risk H of plants with infested
neighbors to the risk h of plants with non-infested
neighbors.
Figs. 4c–f show the effects of R and r on Y: Since the

advantage of calling bodyguards is positively correlated
with the efficacy of the signal, i.e. the relative magnitude
of R to r; we expect the advantage Y of the cooperative
strategy to increase with increasing R and decreasing r:
This is consistent with the result of the model when H is
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somewhat larger than h (Figs. 4c and d). However, a
counterintuitive relationship appears when H is close to
h; that is, in this case, Yðq;NÞ can take a maximum
value given medium values of R or r (Figs. 4e and f).
This is probably because of a hidden negative effect of
increasing R; which is explained below. Note that the
future risk of plants is almost independent of whether
their partners are infested under HEh: Now, which is
better for plants, having an infested or a non-infested
partner? Imagine that an individual has just been
attacked. If it has an infested partner, it can recover
with probability R: Conversely, if it has a non-infested
partner, it might only recover with probability r; because
the partner might be an un-cooperative individual.
Following this logic, plants can decrease their risk
by having infested neighbors. That is, plants should
positively ignore their neighbors’ unhappiness. We may
call such intentional un-cooperation ‘‘heartlessness’’.
The negative effect of heartlessness obviously increases
with increasing relative magnitude of R to r; and may
reverse the effect of increasing R or decreasing r: Figs. 4e
and f show this effect.
So far, we have assumed that T is infinitely large for

analytical tractability. To check the validity of this
approximation, we calculated values of Y for finite T :
Fig. 5 shows that the approximations overestimate the
real values, but they are fairly good for large T : The real
values are about 90% of the approximated values for
T ¼ 10: The advantage Y of the cooperative strategy
decreases with decreasing T : This is reasonable, because
plants with a short lifespan need not consider their short
future. For example, when T ¼ 1; the cooperative
strategy is foolish, because plants have no future in
which to recover the signal cost.

2.3. Analysis for all N

Now we consider all N: Unlike the special case of
N ¼ 2; we need explicit functions in the form V ðnsÞ and
ZðkÞ: Therefore, we assume the following simple
functions:

V ðnsÞ ¼ ðR � rÞ
ns � 1

N � 1
þ r; ð5aÞ

ZðkÞ ¼ ðH � hÞ
k

N � 1
þ h: ð5bÞ

We derived these equations by assuming that V ðnsÞ
and ZðkÞ increase linearly with ns and k; respectively.
Note that these functions reduce to those treated in the
previous subsection by substituting N ¼ 2: For mathe-
matical simplicity, we investigate only the conditions
producing evolutionary stability and invasion, and we
do not treat all q: As shown in Appendix C, we can
obtain the following conditions for evolutionary stabi-
lity and invasion:

S

d
oC1ðN;TÞ; ð6aÞ

S

d
oC0ðN;TÞ; ð6bÞ

where we can numerically obtain C0 and C1: The
subscripts imply the values of q: The arguments N and T

are shown for convenience (recall Eq. (1)) and imply
that C0 and C1 depend on those parameters. Note that
C0ð2;TÞ and C1ð2;TÞ should have values equivalent to
Yð0;TÞ and Yð1;TÞ from the definitions of those
symbols.
The effects of R; r; h; and H on C0 and C1 are similar

to those under N ¼ 2 (Fig. 6). Therefore, the main
results of the previous subsection are preserved. Fig. 7
shows the effect of n� on C for different values of N :
From the figure, as N increases, both C0 and C1

decrease. This is explained as follows. Suppose there are
rare cooperative mutants in an un-cooperative popula-
tion. From Eq. (5a), increasing N decreases the con-
tribution of one individual signaler to the recovery
probability of the patch; that is, when N is large, an
additional signal by a cooperative mutant improves the
recovery probability only slightly. Therefore, as N

increases, cooperative mutants become less likely to
invade. Likewise, when N is large, un-cooperative
mutants in a cooperative population decrease the
recovery probability of the patch only slightly. There-
fore, as N increases, the un-cooperative mutants become
more likely to invade. Therefore, whether the coopera-
tive phenotypes are rare or dominant, increasing N

makes the cooperative strategy disadvantageous, as
shown in Fig. 7. At the limit N-N; the relative
contribution of an individual disappears. Therefore,
each individual signaler can never affect the recovery
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probability of the patch by itself, and the cooperative
signal is always disadvantageous.
Fig. 7 also shows that C increases with n� for each N:

Therefore, the cooperative strategy is advantageous
when cooperative individuals do not signal until many
patch-mates become infested. This is probably because
the advantage of the cooperative signal increases with
the increasing certainty of the risk. That is, as the
number of infested patch-mates increases, the risk
increases, and the cooperative signal becomes more
necessary.
Note that C1 is not always larger than C0; while

Yð1;TÞ was always larger than Yð0;TÞ (compare Figs. 4
and 6). The two strategies coexist stably when
C1oS=doC0; that is, when the cooperative strategy
can invade, but is not evolutionarily stable. Therefore,
the two strategies can coexist under N > 2; unlike when
N ¼ 2:
Fig. 8 shows the boundary line that splits the h � n�

plane into two regions, according to the sign of C0 �
C1: Different lines correspond to different values of N:
In the region above the boundary, C0 �C1 is negative,
i.e. the two strategies cannot coexist. Conversely, in the
lower region, C0 �C1 is positive, so they can coexist if
S=d is between C1 and C0. Note that the lines in Fig. 8
intersect the n� axis at points where n� ¼ N � 1; which
means that the two strategies never coexist under
n� ¼ N � 1: This suggests why the two strategies

can coexist under N > 2: Note that even when the
un-cooperative strategy is not evolutionarily stable,
un-cooperative mutants can invade a population of co-
operative individuals as ‘‘sneakers’’. That is, in a
cooperative population, un-cooperative mutants can
benefit from cooperative signals emitted by cooperative
residents, without signaling themselves. Under n� ¼
N � 1; however, a cooperative signal by a non-infested
resident never occurs, as long as the mutant is not
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infested. Therefore, an un-cooperative mutant cannot
steal benefits without paying the cost of signal and
damage, so that sneakers cannot invade. Therefore, the
two strategies cannot coexist under n� ¼ N � 1: In the
previous subsection, we already showed that the two
strategies cannot coexist under N ¼ 2; for which n� ¼
N � 1 ¼ 1:Here, we explained an understandable aspect
of the mechanism of coexistence. Many factors, which
are no longer intuitive, may affect the possibility of
coexistence.

3. Discussion

There is much evidence that chemicals convey
information between plants. Water-soluble or volatile
chemicals are transferred from wounded or infested
plants to undamaged plants via the soil or air (see
articles in Biochem. Sys. Ecol. 29, 2001). For example,
undamaged plants or plant leaves exposed to chemicals
emitted by damaged plants can increase their resistance
to herbivory. In addition, several papers have suggested
that plants reflexively release info-chemicals when
exposed to info-chemicals from other plants. We call
such a secondarily released signal a ‘‘cooperative signal’’
or ‘‘co-signal’’ in this paper.
We theoretically investigated how a cooperative signal

can evolve. We hypothesized that a cooperative signal
evolves to reduce possible future risk and analysed a
mathematical model. As a result, we confirmed that our
hypothesis functions generally, as we expected. The
model showed that the cooperative signal is adaptive,
especially in the following situations: (1) the cost of the
signal is small compared with the cost of damage by
infestation, (2) the efficacy of the signal is significantly
correlated with the local density of the chemical (Rbr),

(3) plants with infested neighbors are at greater risk than
those without infested neighbors (Hbh), and (4)
the lifespan of the plants is long relative to that of
herbivores (Tb1). However, too efficacious a coopera-
tive signal (RE1) may decrease its advantage via the
effect of heartlessness (see Section 2.2).
We know of two systems in which the cooperative

strategy might exist. One involves herbivorous mites and
beans (Dicke et al., 1990; Bruin et al., 1992; Dicke and
Dijkman, 2001), and the other involves aphids and their
host plants (Birkett et al., 2000; Chamberlain et al.,
2001). These systems satisfy condition (4) well. That is,
mites and aphids generally have very short life cycles
and increase explosively, overexploiting their hosts
(Bruin et al., 1992; Dixon, 1985), which means that T

is quite large. Moreover, mites spread by passive aerial
dispersal, and the distribution of their dispersal distance
shows a slope that declines with distance from the
release point (Jung and Croft, 2001). Therefore, in the
mite system, condition (3) should be satisfied (Hbh).
We also showed that the cooperative strategy is more

likely to evolve when N is small. In our model, a
‘‘patch’’ is the region where the efficacy of the signal is
correlated with the number of signalers. Therefore,
small N implies that signal emission by an individual
does not contribute to the recovery of individuals far
from the signaler. The cooperative strategy also becomes
advantageous with increasing n � : That is, the coopera-
tive signal is advantageous if the co-signalers emit the
cooperative signal only under situations of great risk.
From this result, one might think that a larger n� would
evolve if it were an evolutionary trait. However, we
compared only the costs of the cooperative and un-
cooperative strategies here, and not the costs of
strategies with different n� values. If there is selection
on n�; an intermediate n� might be favored. This
problem is beyond the scope of this paper and remains
to be solved.
The model shows that the cooperative and un-

cooperative strategies can coexist stably under specific
conditions. For the two strategies to coexist stably, they
must be able to invade each other. Our model suggests
how mutual invasion is realized. First, the cooperative
mutants can increase in frequency via a mechanism
similar to ‘‘group selection’’. That is, under specific
conditions, patches with many cooperative individuals
have greater fitness than those with few cooperative
individuals, because those patches can prevent the
spread of herbivores in advance. This group-level
or patch-level selection favors patches with many
cooperative individuals and prevents fixation of the
un-cooperative strategy. Conversely, un-cooperative
mutants can invade a population using the cooperative
strategy, because they can benefit from the cooperative
signal emitted by residents, i.e. cooperative individuals,
without paying the cost of signaling. Therefore, both
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strategies can invade each other. Of course, this balance
is kept only when the parameters are within narrow
limits.
In some aspects, our model is interestingly similar to

models of the evolution of altruism or cooperation; that
is, the cooperative and un-cooperative strategies are
analogous to altruism and selfishness, respectively. First,
the cooperative strategy is favored by group-level
selection. In several models of the evolution of altruism,
altruism evolves by group selection. For example,
subpopulations or groups with many altruistic indivi-
duals have greater fitness than those with few altruistic
individuals, so that the altruistic individuals increase in
frequency (e.g. see Wilson, 1990; Wilson and Dugatkin,
1997). Second, iteration, i.e. the repeated recovery and
attack steps, is essential to our model, as in the iterated

prisoner’s dilemma game (Axelrod, 1984), which is a
model of the evolution of cooperation. In the iterated
prisoner’s dilemma game, it is obvious that altruistic or
cooperative strategies are never evolutionarily stable
without iteration, because altruistic players can neither
revenge the treachery of selfish players nor get any
repayment for altruistic behavior. Similarly, in our
model, cooperative signalers need iteration to obtain
repayment of the signal cost.
Group-level selection favoring the cooperative strat-

egy has an interesting feature. In most models of the
evolution of cooperation by group selection, all in-
dividuals in a group obtain an equivalent benefit by
cooperation. In our model, however, there are two kinds
of benefit: future safety and present recovery. Non-
infested individuals obtain future safety, while infested
individuals obtain both future safety and present
recovery. This asymmetry between non-infested and
infested individuals might complicate the model.
In this paper, we assumed that recovery steps precede

attack steps. One might think that attack should precede
recovery. Actually, the order of the sub-steps is not
important, but the timing of evaluation of the costs is
important. Suppose that we evaluate the costs of plants
just before attack steps instead of recovery steps.
Note that there is an attack step and a recovery
step in this order between two successive evaluations
in this case. Therefore, some of the individuals attacked
after an evaluation recover before the next evaluation,
and their costs are not evaluated. To evaluate their
costs, we must evaluate the costs just before recovery
steps, as we did here. We assumed that costs are
evaluated at the end of each time step for mathematical
simplicity. From this assumption, it follows that the
recovery step precedes the attack step in each time step.
This also leads to the initial step in each generation
being a recovery step, not an attack step, which seems
somewhat strange. However, this is not problematic
because the initial recovery step does not affect the
result, as mentioned before.

Indirect defense seems unrealistic at a glance, in spite
of much evidence for it. Furthermore, the hypothesis for
a cooperative strategy proposed here is more compli-
cated. One might think that the theory is too compli-
cated and that there might be simpler interpretations of
the phenomenon. We consider two alternative hypoth-
eses below.
First, the cooperative strategy might have evolved via

‘‘kin selection’’ (Hamilton, 1964; Grafen, 1985; Taylor
and Frank, 1996; Frank, 1998). That is, if neighboring
plants are genetically related, the cooperative signal
literally evolves to help neighboring relatives, not to
reduce own future risk. In order for this hypothesis to be
applicable, the following two conditions must be met:
(1) relatives must tend to clump through the history of
natural selection and (2) the signal efficacy is positively
correlated with the local density of the chemicals, as
assumed here.
Second, the co-signalers might intend to make natural

enemies stay nearby, as combatants to protect against
possible future risk. If bodyguards remain near the
secondary signalers, at least for a while, in spite of the
absence of prey, such a strategy would be effective in
preventing herbivore attack.
We doubt the effects of these two hypotheses in

several cases. For example, plants may not have been
near relatives during past selection, invalidating the kin-
selection hypothesis. We also feel that predators are not
so patient that they will wait for the arrival of herbivores
in the proximity of the plants. However, these mechan-
isms might combine with our mechanism to cause
evolution of a cooperative signal.
Finally, we criticize our own theory. The primary

criticism is that there is scant evidence or few studies in
this area. Several studies have shown, directly or
indirectly, that undamaged plants or leaves exposed to
air gathered from near infested plants or leaves can also
release signal chemicals, which attract natural enemies.
However, the secondarily released signal is weaker
and less effective than that released directly from
damaged leaves (Bruin and Sabelis, 2001). The second-
ary signal might not be actively released. That is, the
signal chemical emitted by infested plants might be
absorbed into the surface of the leaves of neighboring
undamaged plants, and the absorbed chemicals may
then re-diffuse into the air (Bruin et al., 1992, 1995);
in such a case, the secondary signal would not be a
strategy, but merely a trivial physical phenomenon.
Nevertheless, information chemicals released from the
roots of an infested plant and transferred to the roots of
a non-infested individual via water or soil can promote
emission of the signal chemical from the leaves of the
receiver plant (Chamberlain et al., 2001; Dicke and
Dijkman, 2001). Therefore, our hypothesis is applicable
underground. That is, plants can receive information
through the soil.

ARTICLE IN PRESS
Y. Kobayashi, N. Yamamura / Journal of Theoretical Biology 223 (2003) 489–503498



Almost nothing is known about indirect defense
against future enemies. More importantly, the signifi-
cance and role of plant–plant communication or plant–
predator communication are poorly understood. Many
previous investigations of these topics were conducted
under somewhat artificial situations. Moreover, the
plants studied were often cultivated plants or closely
related species. Therefore, from past experimental
investigations we can estimate the significance of info-
chemical communication throughout an ecosystem only
abstractly. Field investigations under more natural
conditions are desired.
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Appendix A

Notation
N the number of individuals per patch
LjQ the state of a patch, in which the leftmost

individual is in state L and there are Q

infested individuals other than the leftmost
X=Y the type of patch, in which the leftmost

individual is phenotype X and all the other
patch-mates are phenotype Y

*/� patch that does not belong to any type
C cooperative strategy
U un-cooperative strategy
n� the cooperative signal occurs when the num-

ber of infested individuals is Xn�

ns the number of signaling individuals in a patch
T the number of time steps per generation
V ðnsÞ recovery probability of patches in which ns

individuals are signaling
ZðkÞ probability of individuals with k infested

patch-mates being attacked
R maximum value of V ðnsÞ: i.e. R ¼ V ðNÞ
r minimum value of V ðnsÞ: i.e. r ¼ V ð1Þ
H maximum value of ZðkÞ; i.e. H ¼ ZðN � 1Þ
h minimum value of ZðkÞ; i.e. h ¼ Zð0Þ
S cost of signal per time step
d cost of damage per time step
q frequency of cooperative individuals
rX=Y ;i recovery probability of a patch of type X=Y

in state i under N ¼ 2

Y the cooperative strategy increase in frequency
when S=doY under N ¼ 2

RX=Y state transition matrix for type X=Y patches
in a recovery step under N ¼ 2

H state transition matrix in an attack step under
N ¼ 2

gX=Y ;i;t frequency of patches in state i at time step t

within the group of type X=Y patches under
N ¼ 2

cX=Y ;t vector whose i-th element is gX=Y ;i;t

%gX=Y ;i temporal average of gX=Y ;i;t; i.e. ð1=TÞPT
t¼1 gX=Y ;i;t

*gX=Y ;i stationary value of gX=Y ;i;t; i.e. limt-NgX=Y ;i;t

%cX=Y per-step average cost of leftmost individuals
in type X=Y patches

xX cost of leftmost individuals of phenotype X in
patches in state 0jm (n �pmpN � 1)

C0 cooperative mutants can invade the un-
cooperative population when S=doC0

C1 the cooperative strategy is evolutionarily
stable when S=doC1

gX=Y ;ijm;t frequency of patches in state ijm just before
the (t þ 1)-th recovery step within the group
of type X=Y patches under general N

%gX=Y ;ijm temporal average of gX/Y,i|m,t, i.e. ð1=TÞPT
t¼1 gX=Y ;ijm;t

ZX=Y ;ijm;t frequency of patches in state ijm just before
the (t þ 1)-th attack step within the group of
type X=Y patches under general N

rX=Y ;ijm recovery probability of type X=Y patches
from state ijm

Appendix B. Condition causing the cooperative strategy

to increase in frequency under N ¼ 2

In this appendix, we derive Eqs. (1) and (2). Let RX=Y

and H denote the transition matrices for the recovery
and attack steps, respectively. The subscript of RX=Y

implies that the matrix depends on the type X=Y of
the patch. From the transition diagrams (Fig. 2), the
matrices are as follows:

RX=Y ¼

1 rX=Y ;2 rX=Y ;3 R

0 1� rX=Y ;2 0 0

0 0 1� rX=Y ;3 0

0 0 0 1� R

2
66664

3
77775; ðB:1aÞ

H ¼

ð1� hÞ2 0 0 0

hð1� hÞ 1� H 0 0

hð1� hÞ 0 1� H 0

h2 H H 1

2
66664

3
77775: ðB:1bÞ
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As mentioned in Section 2.2, rX=C;2 ¼ rC=Y ;3 ¼ R and
rX=U ;2 ¼ rU=Y ;3 ¼ r for any X and Y : The transition
matrix of a unit time step is given by the product HRX=Y

of these matrices. Note that the (i; j) element of matrix
RX=Y (H) is the transition probability from state j to
state i in a recovery (attack) step. Therefore, the (i; j)
element of HRX=Y gives the probability of the transition
from state j to state i per time step.
Note that under N ¼ 2; all patches are classified into

any of the four types: C=C; C=U ;U=C; and U=U :
Therefore, we can split the population into the four
corresponding groups according to the types of patches.
We let gX=Y ;i;t denote the frequency of patches in state i

just before the (t þ 1)-th recovery step within the group
of type X=Y patches. We also let cX=Y ;t denote a vector
whose i-th element is gX=Y ;i;t: Note that this vector
represents the frequency distribution of patch states
within group X=Y ; therefore, the absolute frequency of
type X=Y patches in state i at time t is obtained by (the
frequency of type X=Y patches)gX=Y ;i;t: The distribu-
tion at the next time step is obtained as the product of
the transition matrix and the distribution vector in the
present time step:

cX=Y ;tþ1 ¼ HRX=Y cX=Y ;t: ðB:2Þ

Iteration of Eq. (B.2) yields

cX=Y ;t ¼ ðHRX=Y Þ
tcX=Y ;0; ðB:3Þ

where cX=Y ;0 is the initial frequency distribution
vector.
We denote the average per-step cost of left individuals

in type X=Y patches by %cX=Y : Left individuals incur no
cost in state 1 (state 0j0). In states 2 (state 1j0) and 4
(state 1j1), they are infested and signal; therefore, their
costs in states 2 and 4 are both S þ d: Let xX denote the
per-step cost of left individuals of phenotype X in state 3
(state 0j1). xX depends on phenotype X : If the left
individual is phenotype C; it signals in state 3 (state 0j1),
because its partner is infested; therefore, xC equals the
cost of signal S: By contrast, un-cooperative individuals
do not signal, as they are safe; so xU is 0. As mentioned
before, we assume that costs are additive. Therefore,

%cX=Y is given as

%cX=Y ¼
1

T

XT

t¼1

½0 gX=Y ;1;t þ ðS þ dÞ

 fgX=Y ;2;t þ gX=Y ;4;tg þ xXgX=Y ;3;t�

¼ ðS þ dÞf%gX=Y ;2 þ %gX=Y ;4g þ xX %gX=Y ;3; ðB:4aÞ

where

%gX=Y ;i ¼
1

T

XT

t¼1

gX=Y ;i;t: ðB:4bÞ

The overall per-step cost of phenotype X is equivalent to
that of left individuals of phenotype X ; because of the
symmetry between left and right. A left individual of
phenotype X appears in the left positions of type X=C

and X=U patches with probabilities q and (1� q),
respectively, because of the random distribution of
individuals. Therefore, the per-step cost of left individuals
of phenotype X is given by q%cX=C þ ð1� qÞ%cX=U ; and this
equals the overall per-step cost of phenotype X : If
the overall cost of phenotype C is smaller than that of
phenotype U ; phenotype C increases in frequency. There-
fore, the condition causing the cooperative phenotype to
increase in frequency is given by the following inequality:

q%cC=C þ ð1� qÞ%cC=Uoq%cU=C þ ð1� qÞ%cU=U : ðB:5Þ

Substituting Eq. (B.4) for Eq. (B.5) and rearranging
the resulting equation, we have

S

d
oYðq;TÞ; ðB:6aÞ

where

where
P4

i¼1 %gX=Y ;i ¼ 1: Eq. (B.6) equals Eq. (1). There-
fore, we have derived the condition causing the
cooperative strategy to increase in frequency under N ¼
2: Since we can numerically calculate %gX=Y ;i for any X=Y

and i from Eqs. (B.2) and (B.4b), we can also obtain the
value of Yðq;TÞ from Eq. (B.6b).
Since our system is a non-cyclical Markovian process,

it has a stationary distribution *gX=Y ;i; and %gX=Y ;i

approaches *gX=Y ;i; as T infinitely increases. One can
easily obtain *gX=Y ;i as the i-th element of the leading
eigenvector of matrix HRX=Y as

*gX=Y ;1 ¼
1� h

hO
; ðB:7aÞ

*gX=Y ;2 ¼
1

w2O
; ðB:7bÞ

*gX=Y ;3 ¼
1

w3O
; ðB:7cÞ

*gX=Y ;4 ¼
2� h

Rð1� hÞ
�

rX=Y ;2

Rw2
�

rX=Y ;3

Rw3

� �
O�1; ðB:7dÞ

where

O ¼
2� h

Rð1� hÞ
þ
1� h

h
þ

R � rX=Y ;2

Rw2
þ

R � rX=Y ;3

Rw3
; ðB:7eÞ
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w2 ¼ 1� ð1� rX=Y ;2Þð1� HÞ; ðB:7fÞ

w3 ¼ 1� ð1� rX=Y ;3Þð1� HÞ; ðB:7gÞ

Then, substituting *gX=Y ;i for %gX=Y ;i in Eq. (B.6b), we
obtain the analytical expression of Yðq;NÞ; which is
given in Eq. (2).

Appendix C. Conditions of evolutionary stability and

invasion under general N

In this appendix, we derive the condition producing
evolutionary stability and the condition resulting in
invasion for the cooperative strategy for general N:
First, as we did in Appendix B, we split the population
according to the types of patches, and obtain five
groups: i.e. groups of type C=C; C=U ; U=C; U=U ; and
*/�. We let gX=Y ;ijm;t denote the frequency of the patches
in state ijm just before the (t þ 1)-th recovery step within
the group of type X=Y patches. We let ZX=Y ;ijm;t denote
the corresponding frequency just before the (t þ 1)-th
attack step. Since recovery is equivalent to the transition
to state 0j0; the state transition in a recovery step is
described by the following equations:

ZX=Y ;0j0;t ¼
X
i;m

rX=Y ;ijmgX=Y ;ijm;t; ðC:1aÞ

ZX=Y ;ijm;t ¼ ð1� rX=Y ;ijmÞgX=Y ;ijm;tðijma0j0Þ; ðC:1bÞ

where rX=Y ;ijm is the recovery probability of type X=Y

patches from state ijm: Note that Eq. (C.1) corresponds
to matrix RX=Y under N ¼ 2:
In an attack step, a state 0jm patch arises from a state

0jk patch before the sub-step, where k is any number
smaller than or equal to m: The state 0jk patch shifts to
state 0jm; if the leftmost individual is not attacked and
m � k other individuals are attacked. The probability of
the former is 1� ZðkÞ; and that of the latter is

N � 1� k

m � k

 !
ZðkÞm�kf1� ZðkÞgN�m�1;

where

N � 1� k

m � k

 !

is the number of combinations of m � k individuals out
of N � 1� k individuals. The product of these two
probabilities gives the probability that a patch in state
0jk shifts to state 0jm in an attack step. Therefore,
we have

gX=Y ;0jm;tþ1 ¼
Xm

k¼0

N � 1� k

m � k

 !
ZðkÞm�k

 f1� ZðkÞgN�mZX=Y ;0jk;t: ðC:2Þ

A state 1jm patch arises from one of the patches in
state 0jk or state 1jk before the attack step, where mXk:
A patch in state 0jk shifts to state 1jm if the leftmost
individual and m � k other individuals are attacked. The
probability of the former condition is ZðkÞ; and that of
the latter is

N � 1� k

m � k

 !
ZðkÞm�kf1� ZðkÞgN�m�1:

A patch in state 1jk shifts to state 1jm if m � k

individuals other than the leftmost are attacked anew.
Since there are k þ 1 infested individuals in a state 1jk
patch, the condition is satisfied with probability

N � 1� k

m � k

 !
Zðk þ 1Þm�kf1� Zðk þ 1ÞgN�m�1:

Therefore, we have

gX=Y ;1jm;tþ1 ¼
Xm

k¼0

N � 1� k

m � k

 !
ZðkÞm�kþ1

 f1� ZðkÞgN�m�1ZX=Y ;0jk;t

þ
Xm

k¼0

N � 1� k

m � k

 !
Zðk þ 1Þm�k

 f1� Zðk þ 1ÞgN�m�1ZX=Y ;1jk;t: ðC:3Þ

Together, Eqs. (C.2) and (C.3) represent the state
transition in attack steps. Note that these equations
correspond to matrix H defined in Appendix B. To
iteratively calculate gX=Y ;ijm;t for each time step, we need
the value of rX=Y ;ijm in Eq. (C.1). rX=Y ;ijm is a recovery
probability, so it depends on the number of signaling
individuals, ns; according to Eq. (5a), and ns depends on
the type (X=Y ) and state (ijm) of the patch. In a patch in
state ijm; the cooperative individuals signal if i þ mXn�
and any infested individuals signal. Therefore, we can
calculate ns for any set of patch type and state (see
Table 1). Consequently, we can obtain the values of
rX=Y ;ijm from Eq. (5a) and Table 1. Then, applying
Eqs. (C.1), (C.2) and (C.3) iteratively, we can calculate
the values of gX=Y ;ijm;t for each time step.
We denote the average per-step cost of the leftmost

individuals of phenotype X in type X=Y patches as

%cX=Y : Noting that an infested individual incurs cost S þ
d and that costs are additive, we have

%cX=Y ¼
1

T

XT

t¼1

ðS þ dÞ
XN�1

m¼0

gX=Y ;1jm;t

(

þxX

XN�1

m¼n�

gX=Y ;0jm;t

)
; ðC:4Þ

where xX depends on the phenotype X of the leftmost
individual. If the leftmost individual is cooperative,
it signals if there are at least n� infested individuals;
therefore, xC ¼ S (note that the second sum in the
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middle bracket in Eq. (C.4) is the sum for
n �pmpN � 1). Conversely, if the individual is not
cooperative, it does not signal so long as it is not
infested; thus, xU ¼ 0:
If the cost of the wild type is smaller than the cost of

rare mutants, the wild type is evolutionarily stable. If
not, the mutant strategy can invade. Therefore, the
respective conditions for evolutionary stability and
invasion for the cooperative strategy are

%cC=Co%cU=C ; ðC:5aÞ

%cC=Uo %cU=U : ðC:5bÞ

Substituting Eq. (C.4) for Eq. (C.5), and rearranging
the resulting equations, we have

S

d
oC1 ¼

PN�1
m¼0 %gU=C;1jm �

PN�1
m¼0 %gC=C;1jmPN�1

m¼0 %gC=C;1jm þ
PN�1

m¼n� %gC=C;0jm �
PN�1

m¼0 %gU=C;1jm

;

ðC:6aÞ

S

d
oC0 ¼

PN�1
m¼0 %gU=U ;1jm �

PN�1
m¼0 %gC=U ;1jmPN�1

m¼0 %gC=U ;1jm þ
PN�1

m¼n� %gC=U ;0jm �
PN�1

m¼0 %gU=U ;1jm

;

ðC:6bÞ

where

%gX=Y ;ijm ¼
1

T

XT

t¼1

gX=Y ;ijm;t: ðC:6cÞ

Eqs. (C.6) is equivalent to Eq. (6). We can calculate
gX=Y ;ijm;t for any time step iteratively by applying
Eqs. (C.1)–(C.3). Therefore, we can also obtain the
values of C0 and C1 from Eqs. (C.6).
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Table 1

Values of ns for possible combinations of patch types and states

STATE

0jm 1jm

TYPE

C=C m if mon�
N if mXn�

1þ m if 1þ mon�
N if 1þ mXn�

C=U m if mon�
1þ m if mXn�

1þ m

U=C m if mon�
N � 1 if mXn�

1þ m if 1þ mon�
N if 1þ mXn�

U=U m 1þ m

ns depends not only on types and states, but also on whether the

number of infested individuals is larger than n� or not. Therefore, ns

values are given with conditions in the table.
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